HI regions in the Large Magellanic Cloud NI

R136 (30Dorad

500 pc

Dr. Karl Remeis-Sternwarte Astronomisches Institut der Universität Erlangen-Nürnberg (kisetsu.tsuge@fau.de)

The Large Magellanic Cloud (LMC)

One of the closest galaxies to the Milky Way. Distance: 50 kpc Inclination angle: ~ 30 deg. Active star formation Ideal for studying star formation of an entire galaxy.

(a) Distributions of colliding HI clouds

ATCA & HI archival data

Friedrich-Alexander-Universität Erlangen-Nürnberg

Summary

HI 21cm

Multi-wavelength observations are necessary to obtain a comprehensive understanding of the interstellar medium (ISM) evolution. We focus our study on the Large Magellanic Cloud (LMC), which is an ideal target for studying galaxy-scale (~ kpc) ISM dynamics and evolution due to its close distance and almost face-on geometry. We analyzed by combining X-ray and radio data (HI, CO) to reveal the heating mechanism of diffuse extended X-ray emission. We utilize the wide field of view and high sensitivity of eROSITA and investigated the physical properties of diffuse X-ray in detail toward active star-forming regions N11. We conducted spectrum fitting toward four regions. We found evidence of two hot plasma components with temperatures of ~0.2 keV and ~0.5--1.0 keV. The hotter component exists much more near the superbubble of N11. In the bubble region, the hot plasma has most likely been heated by high-mass stellar winds and supernova remnants. In the other three regions, the energy of high-mass stellar winds is not sufficient to heat X-ray emissions. Instead, it is suggested that HI gas collision at kpc scale could be the gas heating mechanism by comparison with HI data.

Colliding HI gas flows triggers active star formation in the LMC

Fukui et al. 2017; Tsuge et al. 2019; Tsuge et al. 2021c

HI bridge between the LMC and SMC

Formation of massive star cluster was possibly triggered by galactic tidal interaction (Fujimoto & Noguchi 1990) - LMC gas turbulence, Inflow of the SMC gas; Bekki & Chiba (2007a, b) We analyzed HI data of the LMC • HI gas consists of two velocity components (L- and D-components) (Luks & Rolfs 1992)

Magellanic

bridge

A typical spectrum of HI at (RA, Dec) = $(5h46m43.54s, -69^{\circ} 42')$ 59.31s). The blue and red shaded ranges indicate the integration velocity ranges of L- and D-components, respectively.

We define I-component as the intermediate velocity component of the L- and D-components.

• We reveal the evidence of the collision toward the star-forming regions 1. Complementary spatial distribution between the two components 2. Bridge features connecting the L- and D-components

The I-component is thought to be formed by deceleration of the gas due to the collision of the L- and D-components.

 \rightarrow Observational trace of gas collisions

- 66⁰ 30'

The I-component coincides with the spatial distributions of the major star-forming regions (~70% of the total number; Tsuge et al. 2021c).

We propose that the collisions of HI gas were induced by the galactic tidal interaction between the LMC and the SMC and triggered high-mass star formation in the whole LMC.

Heating mechanism of ISM / Geometry of the HI collision

Distributions of x-ray emission obtained with eROSITA

Schematic view of collision

Soft X-ray map

Tsuge et al. 2022 in prep.

HI Ridge region (including 30 Dor) N11region (second largest HII region)

We selected four regions based on the morphology Soft x-ray map NH map Ha map

Gas heating by high-velocity collisions

- Two thermal components are required by spectrum fitting.
- North: heating by high-mass stellar winds
- South: No high-mass stars.

3D geometry of the collision The L-comp. and soft X-ray are nicely anti-correlated.

 $N_{\rm H}$ (X-ray)

 $[10^{21} \text{cm}^{-2}]$

Region

Absorption column dens	ity	
D-component.		
\rightarrow The L-component is located in front of the	NH	and so
related.		_

Dark lane, Small	
------------------	--

Diffuse X-ray is absorbed by cold ISM

- 67⁰ 30' 04^h 55^m 05^h 00^m 04^h 55^m 05^h 00^m $05^{n} 00^{m}$ $04^{h} 55^{m}$ **Dark lane** : V-shaped morphology, Less intense than surroundings : Active star-forming region **Bubble**
 - : Bright emission extending Small north of the bubble
 - Diffuse : Diffuse emission extending north-south at kpc scale

ft X-ray show nicely spatial anticorrelation toward Dark lane region

Conclusions

We conducted the spectral fitting of the N11 region using eRASS 1-4 data

Spectra of all TMs are shown in different colors. The source components are highlighted with thick lines (solid: lower-temperature vapec1; dashed: higher-temperature vapec2

Region	<i>kT</i> ₁ [keV]	norm1 [10 ⁻⁵ cm ⁻⁵]	<i>kT</i> ₂ [keV]	norm2 [10 ⁻⁵ cm ⁻⁵]	N _H (X-ray) [10 ²¹ cm ⁻²]	red. χ ² (d.o.f.)
Dark lane	0.17 ^{+0.01} _{-0.01}	0.71 ^{+0.11} _{-0.28}	1.09 ^{+0.54} - 0.27	0.01 ^{+0.01} - 0.01	3.13 ^{+1.25} - 0.66	0.99 (516)
Small	0.21 ^{+0.01} _{-0.01}	1.70 ^{+0.96} - 0.46	0.70 ^{+0.59} _{-0.22}	0.14 ^{+0.05} _{-0.12}	4.07 ^{+1.89} _{-1.13}	1.03 (102)
Bubble	0.21+0.01	1.79 ^{+0.96} - 0.46	0.90 ^{+0.59} - 0.22	0.16 ^{+0.02} _{-0.02}	2.11 ^{+0.53} _{-0.73}	1.03 (336)
Diffuse	0.21 ^{+0.01} _{-0.01}	0.53 ^{+0.27} _{-0.95}	$0.75^{+0.54}_{-0.27}$	0.05 ^{+0.01} _{-0.01}	0.35 ^{+0.16} - 0.18	1.06 (735)

Dark lane	3.13 ^{+1.25} _{-0.88}	2.80	N _H (X-ray) ~ N _H (radio) ■ Dubble
Small	4.07 ^{+1.89} _{-1.13}	2.61	ISM partially absorbed X-rays
Bubble	2.11 ^{+0.53} _{-0.73}	3.47	$N_{\rm H}$ (X-ray) < $N_{\rm H}$ (radio)
Diffuse	0.35 ^{+0.16} - 0.18	0.90	Absorption is weak.

 $N_{\rm H}$ (radio)

 $[10^{21} \text{ cm}^{-2}]$

Energy input by high-mass stars

Region	$E_p [10^{51}] f^{0.5} m erg$	# of high- mass stars [†]	<i>E</i> _{star} [10 ⁵¹] erg	Bubble: $E_p < E_{star}$ Heating by stellar winds of high-mass
Dark lane	2.99 ^{+0.16} _{-0.66}	4	~0.16	stars. Stellar wind is enough to explain the E_p at ~20 % efficiency (Weaver e
Small	$1.42^{+0.27}_{-\ 0.18}$	2	~0.60	al. 1977). Dark lane, Small, Diffuse
Bubble	2.93 ^{+0.17} _{-0.66}	28	~8	E p > E _{star} Different heating mechanisms are
Diffuse	$2.44_{-0.188}^{+0.18}$	0		needed > Shock heating by HI collision?

Bubble: $E_{\rm p} < E_{\rm star}$ ating by stellar winds of high-mass ars. Stellar wind is enough to explain $E_{\rm a}$ at ~20 % efficiency (Weaver et 1977). Dark lane, Small, Diffuse $E_{p} > E_{star}$

Spectrum is fitted by 2apecs with absorption :TBvarabs *(vapec + vapec).

Absorption NH

Dark lane ~ Small > Bubble >> Diffuse Diffuse X-ray is absorbed by cold ISM

Heating mechanism of the diffuse X-ray

• Bubble: stellar wind

• Dark lane, Small, Diffuse: Other mechanisms are needed. HI collision is one possibility **Future prospects** Heating mechanism of the diffuse X-ray

- Calculate the kinetic energy of the collision Extend the study to the whole LMC --> investigate universality and variety

Reference

• Fujimoto, M., & Noguchi, M. 1990, PASJ, 42, 505 • Bekki, K., & Chiba, M. 2007, PASA, 24, 21 • Fukui, Y., Tsuge, K., Sano, H., et al. 2017, PASJ, 69, L5 • Tsuge, K., Sano, H., Tachihara, K., et al. 2019, ApJ, 871, 44 • Tsuge, K., Sano, H., Tachihara, K., et al. 2021, arXiv:2010.08816 • Knies, J. R., Sasaki, M., Fukui, Y., et al. 2021, A&A, 648, A90 • Sasaki, M., Knies, J., Haberl, F., et al. 2022, 661, A &A, A37